Discrimination power of measures for nonlinearity in a time series
نویسندگان
چکیده
The performance of a number of different measures of nonlinearity in a time series is compared numerically. Their power to distinguish noisy chaotic data from linear stochastic surrogates is determined by Monte Carlo simulation for a number of typical data problems. The main result is that the ratings of the different measures vary from example to example. It therefore seems preferable to use an algorithm with good overall performance, that is, higher order autocorrelations or nonlinear prediction errors. @S1063-651X~97!16205-5#
منابع مشابه
Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملOn convergence of homotopy analysis method to solve the Schrodinger equation with a power law nonlinearity
In this paper, the homotopy analysis method (HAM) is considered to obtain the solution of the Schrodinger equation with a power law nonlinearity. For this purpose, a theorem is proved to show the convergence of the series solution obtained from the proposed method. Also, an example is solved to illustrate the eciency of the mentioned algorithm and the h-curve is plotted to determine the region ...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملTesting for nonlinearity in high-dimensional time series from continuous dynamics
We address the issue of testing for nonlinearity in time series from continuous dynamics and propose a quantitative measure for nonlinearity which is based on discrete parametric modelling. The well-known problems of modelling continuous dynamical systems by discrete models are addressed by a subsampling approach. This measure should preferably be combined with conventional surrogate data testi...
متن کاملDiscrimination of time series based on kernel method
Classical methods in discrimination such as linear and quadratic do not have good efficiency in the case of nongaussian or nonlinear time series data. In nonparametric kernel discrimination in which the kernel estimators of likelihood functions are used instead of their real values has been shown to have good performance. The misclassification rate of kernel discrimination is usually less than ...
متن کامل